Comparative x-ray structure analysis of systemic fungicides â-4(-chlorophenoxy)-á-(1,1dimethylethyl))1H-1,2,4-triazole-1-ethanol and 1-(4-chlorophenoxy) 3,3-dimethyl-1- H(1,2,4-triazole-1-Y-1)2-butanone
Author(s): Jyotsna Chauhan
Vol. 2, No. 2 (2008-07 - 2008-12)
Jyotsna Chauhan
Lecturer, Department of physics, Rajeev Gandhi Technical University, Bhopal
Abstract
The unit cell parameters of â-4( Chlorophenoxy)á-
(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol are a = 8.
130(2) Å b = 16. 790(2) Å c=21. 990Å. á=90Ú b=92.52(1) Ú
ä=90Ú. The space group is determined to be P21/n. The
measured density is 1. 3215g/cm3 and calculated density is
1. 3102g/cm3. The average bond distances of C-H and N-H
types are 0. 96(2)Å and 0. 90(1)Å respectively. The Unit cell
parameter of 1-(4-Chlorophenoxy) 3,3-dimethyl-1- H(1,2,4-
triazole-1-Y-1)2-butanone are a=8.16(10) Å, b=16.81(3)
Å c=22 05(2) Å ,á=90Ú b=92. 37 (1)Ú ä=90Ú and Z=8 and
space group is determined P21/n. The measured density is 1.
291ìg/cm3 and calculated density is 1. 295ìg/cm3. We can
see that although there are different chemical groups attached
with both the compounds(Ethanol group is attached with
one systemic fungicides while butanone with another.) but
their cell parameters and average bond distances and angles
are nearly equal. Thus we determine the three-dimensional
structure, molecular dimensions, molecular geometry,
electronic structure and the conformation of fungicides and
analyze their crystal structures also. Then correlate the
chemical activity by substituting the chemically active groups
at the crucial sites of the model fungicide to enhance chemical
affinity and introduce conformational changes in the
fungicides to make than more effective, active and to some
extent cheaper.
Keywords: X-ray crystallography, Systemic fungicides, Triazole structure
Introduction
Recently it has been observed that some of these
fungicides are loosing their effects and becoming resistant
to them. So that analogous compounds can be designed as
substitute, if their structures are known. A rational approach
to test these fungicides is to know the three dimensional
structure of these compounds and their macromolecular
receptor sites as well as their molecular complex. The
interactions of proposed fungicides with the macromolecule
of the parasite are dependent on the stereochemistry of these
compounds. In order to design more effective synthetic
fungicides, it is necessary to analyses the three dimensional
structure of these compounds and if possible the receptor
molecule. The structures of these compounds can be obtained
by X-ray diffraction method in crystalline form and they will
invariably be similar to their structures in solution.
Experimental
Colorless well formed crystals are grown by slow
evaporation technique from a solution of cyclohexanone at
278ºK of both the fungicides. The unit cell parameters are
determined by automatic computerized 4-circled Enraf-Nonius
CAD-4 Diffractometer. The crystal structure is solved using
SHELXS-97. .Bond Lengths of â-4(-Chlorophenoxy)á-
(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angstrom)
involving Non-Hydrogen atoms is shown in table 1 and Bond
Angles (Degrees) – involving Non-Hydrogen atoms is shown
in table2 . Bond Lengths of 1-(4-chlorophenoxy) 3, 3-
dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone (Angstrom)
involving Hydrogen atoms is shown in table 3 and Bond
Angles (Degrees) – involving Hydrogen atoms is shown in
table4. The ORTEP Diagram of 1-(4-chlorophenoxy) 3, 3-
dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone is shown
in fig. 1 and the ORTEP Diagram of â-4(-Chlorophenoxy)
á-(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol is shown
in fig. 2.
Result and Discussion:
In â-4(-Chlorophenoxy)á-
(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol the average
bond distances of C-H and N-H types are 0. 96(2)Å and.
0.90(1)Å respectively. In 1-(4-chlorophenoxy) 3, 3-dimethyl-
1-H(1,2,4 triazole-1-Y-1) -2 –butanone the average bond
distance of C-H is 0.95Ú. The bond lengths and angles in the
benzene rings show regular features in both the molecules.
The C(4)-Cl(1) and Cl(2)-C(18) distances are 1. 748(1)Å and
1. 747(2)Å in â-4(-Chlorophenoxy)á1,1dimethylethyl)1H-
1,2,4-triazole-1-ethano l .The Cl(1A)-C(4A) and Cl (1 B)-C(4B)
distances are I .733Ú and 1 .738Ú in 1-(4-chlorophenoxy) 3,
3-dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. These
distances are short and shortening may be due to
delocalization of electrons from the benzene rings. The whole
molecules appeared to be twisted and folded and reason may
be due to stacking constraints. The bond distances around
C(7) and C(21) are as usual shorter than single bond values
in â-4(-Chlorophenoxy)-á-1,1dimethylethyl)1H-1,2,4-triazole
Fig. 1: ORTEP Drawing at 50% probability level.

Fig. 2: ORTEP DIAGRAM

Table 1: Bond Lengths of â-4(-Chlorophenoxy)á-
(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angstrom)
involving Non-Hydrogen atoms.
Cl(1)
-C(4)
1.7484(1)
O(1)
-C(1)
1.3889(2)
O(1)
-C(7)
1.4028(1)
O(2)
-C(8)
1.2070(1)
N(1)
-N(2)
1.3456(1)
N(1)
-C(14)
1.2955(2)
N(2)
-C(7)
1.4360(1)
N(2)
-C(13)
1.3410(1)
N(3)
-C(13)
1.3084(2)
N(3)
-C(14)
1.3239(1)
C(1)
-C(2)
1.3757(2)
C(1)
-C(6)
1.3951(1)
C(2)
-C(3)
1.3732(2)
C(3)
-C(4)
1.3881(2)
C(4)
-C(5)
1.3696(2)
C(5)
-C(6)
1.3636(1)
C(7)
-C(8)
1.5399(2)
C(8)
-C(9)
1.5157(1)
C(9)
-C(10)
1.5361(2)
C(9)
-C(11)
1.5022(1)
C(9)
-C(12)
1.5219(1)
Cl(2)
-C(18)
1.7473(2)
O(3)
-C(15)
1.3751(1)
O(3)
-C(21)
1.4114(2)
O(4)
-C(22)
1.1995(2)
N(4)
-N(5)
1.3349(1)
N(4)
-C(28)
1.3032(1)
N(5)
-C(21)
1.4402(2)
N(5)
-C(27)
1.3342(1)
N(6)
-C(27)
1.3096(2)
N(6)
-C(28)
1.2971(1)
C(15)
-C(16)
1.3851(1)
C(15)
-C(20)
1.3947(2)
C(16)
-C(17)
1.3720(2)
C(17)
-C(18)
1.3606(1)
C(18)
-C(19)
1.3670(2)
C(19)
-C(20)
1.3835(1)
C(21)
-C(22)
1.5470(2)
C(22)
-C(23)
1.5043(2)
C(23)
-C(24)
1.5154(2)
C(23)
-C(25)
1.4884(1)
C(23)
-C(26)
1.5587(1)
Table 2: Bond Angles (Degrees) of â-4(-Chlorophenoxy)á-
(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angles are
ordered on the middle label, left to right and top to bottom)
involving Non-Hydrogen atoms with estimated standard
deviations in parentheses:
C(1) -O(1)
-C(7)
119.63(1)
N(2) -N(1)
-C(14)
103.80(2)
N(1) -N(2)
-C(7)
121.85(2)
N(1) -N(2)
-C(13)
107.77(1)
C(7) -N(2)
-C(13)
130.36(2)
C(13) -N(3)
-C(14)
103.31(1)
O(1) -C(1)
-C(2)
125.09(1)
O(1) -C(1)
-C(6)
114.80(2)
C(2) -C(1)
-C(6)
119.92(1)
C(1) -C(2)
-C(3)
120.82(2)
C(2) -C(3)
-C(4)
117.98(1)
Cl(1) -C(4)
-C(3)
118.81(2)
Cl(1) -C(4)
-C(5)
119.23(1)
C(3) -C(4)
-C(5)
121.96(1)
C(4) -C(5)
-C(6)
119.49(2)
C(1) -C(6)
-C(5)
119.74(1)
O(1) -C(7)
-N(2)
111.71(2)
O(1) -C(7)
-C(8)
100.96(2)
N(2) -C(7)
-C(8)
113.64(1)
O(2) -C(8)
-C(7)
119.12(1)
O(2) -C(8)
-C(9)
123.55(1)
C(7) -C(8)
-C(9)
117.34(2)
C(8) -C(9)
-C(10)
109.77(1)
C(8) -C(9)
-C(11)
109.49(1)
C(8) -C(9)
-C(12)
107.05(2)
C(10) -C(9)
-C(11)
109.95(1)
C(10) -C(9)
-C(12)
109.85(2)
C(11) -C(9)
-C(12)
110.69(1)
N(2) -C(13)
-N(3)
110.29(1)
N(1) -C(14)
-N(3)
114.77(1)
C(15) -O(3)
-C(21)
118.87(2)
N(5) -N(4)
-C(28)
112.37(1)
N(4) -N(5)
-C(21)
130.51(2)
N(4) -N(5)
-C(27)
107.91(1)
C(21) -N(5)
-C(27)
121.56(1)
C(27) -N(6)
-C(28)
118.71(2)
O(3) -C(15)
-C(16)
125.05(1)
O(3) -C(15)
-C(20)
114.45(2)
C(16) -C(15)
-C(20)
120.50(1)
C(15) -C(16)
-C(17)
119.72(1)
C(16) -C(17)
-C(18)
119.53(2)
Cl(2) -C(18)
-C(17)
119.71(2)
Cl(2) -C(18)
-C(19)
118.39(1)
C(17) -C(18)
-C(19)
121.89(2)
C(18) -C(19)
-C(20)
119.78(1)
C(15) -C(20)
-C(19)
118.56(2)
O(3) -C(21)
-N(5)
111.56(1)
O(3) -C(21)
-C(22)
102.56(2)
N(5) -C(21)
-C(22)
112.55(1)
O(4) -C(22)
-C(21)
119.37(2)
O(4) -C(22)
-C(23)
123.16(1)
C(21) -C(22)
-C(23)
117.31(2)
C(22) -C(23)
-C(24)
112.53(1)
C(22) -C(23)
-C(25)
112.27(2)
C(22) -C(23)
-C(26)
105.10(1)
C(24) -C(23)
-C(25)
112.81(2)
C(24) -C(23)
-C(26)
107.22(1)
C(25) -C(23)
-C(26)
106.27(2)
N(5) -C(27)
-N(6)
100.90(1)
N(4) -C(28)
-N(6)
100.06(1)
Table 3: Bond lengths [ A] with estimated standard deviation
in parentheses for 1-(4-Chlorophenoxy) 3,3-dimethyl-1-
H(1,2,4-triazole-1-Y-1)2-butanone
C1(1A)-C (4A)
1.733 (2)
O (1A) -C (1A)
1.383 (2)
O (1A) -C (7A)
1.423 (2)
O (2A) -C (10A)
1.200 (2)
N (1A) -C (8A)
1.339 (3)
N (1A) -N (2A)
1.361 (2)
N (1A) -C (7A)
1.440 (2)
N (2A) -C (9A)
1.312 (3)
N (3A) -C (8A)
1.315 (3)
N (3A) -C (9A)
1.336 (3)
C (1A) -C (2A)
1.382 (3)
C (1A) -C (6A)
1.386 (3)
C (2A) -C (3A)
1.390 (3)
C (2A) -H (2AA)
0.9300
C (2A) -C (4A)
1.371 (3)
C (3A) -H (3AA)
0.9300
C (3A) -C (5A)
1.381 (3)
C (4A) -C (6A)
1.372 (3)
C (5A) -H (5AA)
0.9300
C (6A) -H (6AA)
0.9300
C (7A) -C (10A)
1.553 (3)
C (7A) -H (7AA)
0.9800
C (8A) -H (6AA)
0.9300
C (9A) -H (8AA)
0.9300
C (10A)-C (11A)
1.512 (3)
C (11A)-C (12A)
1.529 (3)
C (11A)-C (14A)
1.530 (3)
C (11A)-C (13A)
1.542 (3)
C (12A)-H (12A)
0.9600
C (12A)-H (12B)
0.9600
C (12A)-H (12C)
0.9600
C (13A)-H (13A)
0.9600
C (13A)-H (13B)
0.9600
C (13A)-H (13C)
0.9600
C (14A)-H (14A)
0.9600
C (14A)-H (14B)
0.9600
C (14A)-H (14C)
0.9600
C1(1B) -C (4B)
1.738 (2)
C1(1B) -C (1B)
1.388 (2)
O (1B) -C (7B)
1.411 (2)
O (1B) -C (10B)
1.201 (2)
N (1B) -C (9B)
1.337 (3)
N (1B) -N (2B)
1.356 (2)
N (1B) -C (7B)
1.443 (2)
N (2B) -C (8B)
1.316 (3)
N (3B) -C (9B)
1.314 (3)
N (3B) -C (8B)
1.331 (3)
C (1B) -C (2B)
1.381 (3)
C (1B) -C (6B)
1.386 (3)
C (2B) -C (3B)
1.381 (3)
Table 4: Bond angles [degree] with estimated standard
deviation in parentheses for 1-(4-Chlorophenoxy) 3,3-
dimethyl-1- H(1,2,4-triazole-1-Y-1)2-butanone 1-ethanol.
C (1A) – O (1A) – C (7A)
119.69 (15)
C (8A) – N (1A) – N (2A)
108.92 (18)
C (8A) – N (1A) – C (7A)
130.80 (19)
N (2A) – N (1A) – C (7A)
120.28 (16)
C (9A) – N (1A) – N (1A)
101.36 (19)
C (8A) – N (3A) – C (9A)
101.62 (15)
C (2A) – C (1A) – O (1A)
124.65 (17)
C (2A) – C (1A) – C (6A)
120.37 (19)
O (1A) – C (1A) – C (6A)
114.97 (17)
C (1A) – C (2A) – C (3A)
119.45 (19)
C (1A) – C (2A) – C (2AA)
120.32(16)
C (3A) – C (2A) – C (2AA)
120.34(16)
C (4A) – C (4A) – C (2A)
119.81(12)
C (4A) – C (3A) – C (3AA)
120.12(12)
C (2A) – C (3A) – C (3AA)
120.14(14)
C (3A) – C (4A) – C (5A)
120.62 (12)
C (3A) – C (4A) – C (1A)
120.15 (19)
C (5A) – C (4A) -C (1A)
119.27 (18)
C (6A) – C (5A) -C (4A)
120.14 (12).
C (6A) – C (5A) -H (5AA)
120.02(15)
C (4A) – C (5A)- H (5AA)
120.03(14)
C (5A) – C (6A) – C (1A)
119.72 (12)
C (5A) – C (6A) – H (6AA)
120.14(16)
C (1A) – C (6A) – H (6AA)
120.13(15)
O (1A) -C (7A) – N (1A)
111.06 (16)
O (1A) -C (7A) – C (10A)
101.45 (15)
N (1A) -C (7A) – C (10A)
113.11 (16)
O (1A) -C (7A) – H (7AA)
110.34(18)
N (1A) -C (7A) -H (7AA)
110.32(12)
C (10A) -C (7A) -H (7AA)
110.33(12)
N (3A) – C (8A) -N (1A)
111.24 (12)
N (3A) – C (8A) -H (8AA)
124.42(18)
N (1A) – C (8A) -H (8AA)
124.43(19)
N (2A) – C (9A) -N (3A)
116.66 (12)
N (2A) – C (9A)- H (9AA)
121.54(12)
N (2A) – C (9A) -H (9AA)
121.53(15)
O (2A) – C (10A) -C (11A)
124.62 (12)
O (2A) – C (10A) -C (7A)
118.52 (19)
C (11A) -C (10A) -C (7A)
116.86 (18)
C (10A) -C (11A) -C (12A)
107.47 (18)
C (10A) -C (11A) – C (14A)
109.9 (20)
C (12A) -C (11A) – C (14A)
110.01(20)
C (10A) -C (11A) – C (13A)
110.3 (12)
C (12A) -C (11A) – C (13A)
109..7 (12)
C (14A) -C (11A) – C (13A)
109.4 (12)
C (11A) -C (12A) – H (12A)
109.5(14)
C (11A) -C (112A) H (12B)
109.5(15)
H (12A) – C (12A) – H (12B)
109.5(14)
C (11A) – C (12A) – H (12C)
109.5(12)
H (12A) – C (12A) – H (12C)
109.5(14)
H ( 12B) -C (12A) – H (12C)
109.5(13)
C (11A) – C (13A) – H (13A)
109.5(12)
C (11A) – C (13A) – H (13B)
109.5(11)
H (13A) – C (13A) – H (13B)
109.5(10)
C (11A) – C (13A) – H (13C)
109.5(12)
H ( 13A)- C (13A) – H (13C)
109.5(14)
H ( 13B)- C (13A) – H (13C)
109.5(15)
C (11A) – C (14A) – H (14A)
109.5(14)
C (11A) – C (14A) – H (14B)
109.5(11)
H (14A) – C (14A) – H (14B)
109.5(15)
C (11A) – C (14A) – H (14C)
109.5(14)
H (14A) – C (14A) – H (14C)
109.5(12)
H (14B) – C (14A) – H (14C)
109.5(11)
C (1B) – O (1B) – C (7B)
119.10 (15)
C (9B) – N (1B) – N (2B)
109.03 (17)
C (9B) – N (1B) – C (7B)
130.16 (18)
N (2B) – N (1B) – C (1B)
120.79 (16)
C (8B) – N (2B) – N (8B)
101.42 (18)
C (9B) – N (3B) – C (8B)
101.8 (12)
C (2B) -C (1B) – C (6B)
120.65 (19)
C (2B) -C (1B) -O (1B)
124.74 (17)
C (6B)- C (1B) – O (1B)
114.60 (17)
C (3B)- C (1B) – C (1B)
119.35 (19)
C (3B) -C (2B) – H (2BA)
120.31(14)
C (1B)- C (2B) – H (2BA)
120.34(15)
C (4B)- C (3B) – C (2B)
119.9 (12)
C (4B)- C (3B) – H (3BA)
120.11(16)
C (2B)- C (3B) – H (3BA)
120.12(14)
C (3B)-C (4B) – C (5B)
121.11 (12)
C (3B)-C (4B) – C1(1B)
119.91 (12)
C (3B)- C (4B)- C1 (1B)
119.72 (18)
C (5B)- C (4B)-C (1B)
119.18 (17)
C (4B)- C (5B)- C (6B)
119.5 (12)
C (4B)- C (5B)- H (5BA)
120.22(15)
C (6B)- C (5B)- H (5BA)
120.21(16)
C (5B)- C (6B)- C (1B)
119.52 (12)
C (5B)- C (6B)- H (6BA)
120.25(14)
C (1B)- C (6B)- H (6BA)
120.22(13)
O (1B)- C (7B)- N (1B)
111.33 (16)
O (1B)- C (7B)- C (10B)
101.97 (15)
N (1B)- C (7B)- C (10B)
112.9 (16)
O (1B)- C (7B)- H (10B)
110.12(13)
N (1B) – C (7B)-H (7BA)
110.13(14)
C (10B)-C (7B) -H (7BA)
110.15(12)
N (2B)- C (8B)- N (3B)
116.71 (12)
N (2B)- C (8B)- H (8BA)
121.72(13)
N (3B)- C (8B) -H (8BA)
121.71(13)
N (3B)- C (9B) -N (1B)
111.13 (12)
N ( 3B)-C (9B) H (9BA)
124.54(14)
N (1B) -C (9B) H (9BA)
124.53(16)
O (2B) -C (10B) -C (11B)
123.6 (12)
O (2B) -C (10B) -C (7B)
119.35 (19)
C (11B) – C (10B) -C (7B)
117.01 (18)
C (13B) – C (11B) – C (10B)
110.3 (12)
C (13B) – C (11B) – C (14B)
112.8 (13)
C (10B) – C (11B) – C (14B)
111.5 (12)
C (13B) – C (11B) – C (12B)
107.7 (13)
C (10B) – C (11B) – C (12B)
106.50 (19)
C (14B) – C (11B) – C (12B)
107.8 (12)
C (11B) – C (12B) – H(12D)
109.5(12)
C (11B) – C (12B) – H (12E)
109.5(13)
H (12D) – C (12B) – H (12E)
109.5(14)
C (11B) – C (12B) – H (12F)
109.5(13)
H (12D) – C (12B) -H (12F)
109.5(15)
H (12E) – C (12B) -H (12F)
109.5(13)
C (11B) – C (13B) – H (13D)
109.5(14)
C (11B) – C (13B) – H (13E)
109.5(15)
H (13D) – C (13B)- H (13E)
109.5(14)
C (11B) – C (13B) – H (13F)
109.5(12)
H (13D) – C (13B) – H (13F)
109.5(11)
H (13E) – C (13B) – H (13F)
109.5(11)
C (11B) – C (14B) – H (14D)
109.5(12)
C (11B) – C (14B) – H (14E)
109.5(13)
H (14D) – C (14B)- H (14E)
109.5(13)
C (11B) – C (14B) – H (14F)
109.5(14)
H (14D) – C (14B) – H (14F)
109.5(14)
H (14E) – C (14B) – H (14F)
109.5(14)
The bond distances around C(7A) and C(7B) are
usual shorter than single bond values in 1-(4-chlorophenoxy)
3, 3-dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. They
may also appears to bear a partial double bond character. In
â-4(-Chlorophenoxy)á-1,1dimethylethyl-1H-1,2,4-triazole-1
ethanol the C(7)-O(1) and C(21)-O(3) distances are 1. 4028(1)Å
and 1. 4114(2)Å respectively. In 1-(4-chlorophenoxy) 3, 3-
dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. the O(IA)
C(7A) and O(2B)-C(7B) distances are 1.423(2) A and 1.411(2). These distances do not change significantly in similar
structures, despite variable intermolecular interactions
through them. The bond distances in the triazol rings are
comparable to corresponding distances is heterocyclic rings
1.339 (A). The average set of data by Spencer is 1.377A and
119° respectively. The dimensions of the methyl groups are
normal and comparable with those in 0-methyl
obtusaquinone and moscaline hydro bromide.
The molecule is found to adopt a conformation such that
the triazolyl ring is inclined angle of 72.9(9)° to the aromatic
ring and at an angle of 61. 5(9)° 1 O(1A), C(7A) grouping The
resulting arrangement 1ead approach of the ortho-H, H(2A)
to the triazol, atoms N(1A) and N (2A) such that both N….H
distances lie within the sum of the Vander Walls radii of N
and H. There was an accompanying distortion of the exocyclic
angles at C(1A) with the C(2A)-C(1A)-O(1A) bond angle of.
124. 65(17)° being considerably larger than the value found
for O1(A)-C(IA) C(6A) 114 .97(17)°
The triozolyl ring is planner with C(7A) lying only
O.063(7)A from the mean plane. Although the C(8A) and
C(9A)-N(3A) distances are somewhat larger than C(8A)-N(3A)
and C(9A)-N(2A), in keep With the uncharged canonical
valance form. All four C-N distances are shorter than a normal
single bond (1.47A). The N(1A)-N(2A) bond is also shorter
than a normal single bond (1.45A). The three atoms bonded
to N(1) are almost co planer with it. Taken together these
data indicate extensive delocalization within the heterocyclic
ring. The most note worthy feature of the heterocyclic ring is
the asymmetry of the exocyclic angles at N (1A) [ i30.80°1.
We have observed a similar pattern in related triazole systems
and it appear to be a function of a triazolyl ring itself rather
than the influence of any inter or intramolecular interactions.
The C(1IA), C(1OA), C(7A), O(1A), C(1A) backbone is
rather compressed resulting in the main from the orientation
of the tert-butyl group, the C(1 1A)- C(1OA)-C(7A)-O(IA)
torsion being only 99.17(19)°. From the least square plane
equation by Blow’s method, the benzene and triozolyl rings
are partially planner since the atomic displacements are much
less than their e.s.d’s.The triozolyl ring is inclined to the
aromatic ring at an angle of 72.9(9)°
Thus we study the structure of variety of such compounds
and correlate their structure with biological activity, so that
more safer and effective fungicides at reasonable price can
be developed.
Acknowledgement
The Financial assistance provided by Deptt of Science
and Technology (D. S. T), New Delhi is gratefully
acknowledged.
References
- Kolbe, W. (1976), Poflanzenschutz – Nachnchten Bayer
31, 163-180.
- Clark. T., D.R. Clifford, A.H Deas, P. Gendle and D.A.M.
Watkins (1978), Pestic.Sci.9, 497506.
- Sheldrich, G.M. (1997), SHELXS-97, Program for the
solution of crystal structure.
- Sheldrich, G.M. (1997), SHELXL-97, Program for crystal
structure determination.
- Jolmson, C.K. (1965), ORTEP, Report ORNL-3794. Oak
Ridge National laboratory, Temessee, U.S.A.
- Nowell, l.W. and Walker, P.E. (1982) Acta Cryst. B38, 1857-
1859
- Bucheuauer, H. (1976). Z. P llanzeskar. Pflanzenschutz.
B3, 368-367.
- Martin, T.J. & Morris, D.B. (1979) Pflanzenschutz Nachr.
Am. Ed. 32, 3 1-79
- Senger, Jyotsna, Ph.D. Thesis, Jiwaji University, Gwalior
India (2002).
- Haridus, M., Kulkarni, N.R., Tiwari; R.K. and Singh T.P.
(1982), Curr. Sci. (India) 51(23), 1111.
- Spencer, M. (1959), Acta Cryst. 12, 50.
- Palmer. K.J., Wang, R.Y. and Jurd, L. (1973), Acta Cryst.
B29, 1509.
- Ernst, S.R. and Cogle Jr. F.W. (1973), Acta Cryst. B29,
1543.
- Blow, O.M. (1960), Acta Cryst. 13, 168.
Jyotsna Chauhan
Lecturer, Department of physics, Rajeev Gandhi Technical University, Bhopal
Abstract
The unit cell parameters of â-4( Chlorophenoxy)á- (1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol are a = 8. 130(2) Å b = 16. 790(2) Å c=21. 990Å. á=90Ú b=92.52(1) Ú ä=90Ú. The space group is determined to be P21/n. The measured density is 1. 3215g/cm3 and calculated density is 1. 3102g/cm3. The average bond distances of C-H and N-H types are 0. 96(2)Å and 0. 90(1)Å respectively. The Unit cell parameter of 1-(4-Chlorophenoxy) 3,3-dimethyl-1- H(1,2,4- triazole-1-Y-1)2-butanone are a=8.16(10) Å, b=16.81(3) Å c=22 05(2) Å ,á=90Ú b=92. 37 (1)Ú ä=90Ú and Z=8 and space group is determined P21/n. The measured density is 1. 291ìg/cm3 and calculated density is 1. 295ìg/cm3. We can see that although there are different chemical groups attached with both the compounds(Ethanol group is attached with one systemic fungicides while butanone with another.) but their cell parameters and average bond distances and angles are nearly equal. Thus we determine the three-dimensional structure, molecular dimensions, molecular geometry, electronic structure and the conformation of fungicides and analyze their crystal structures also. Then correlate the chemical activity by substituting the chemically active groups at the crucial sites of the model fungicide to enhance chemical affinity and introduce conformational changes in the fungicides to make than more effective, active and to some extent cheaper.
Keywords: X-ray crystallography, Systemic fungicides, Triazole structure
Introduction
Recently it has been observed that some of these fungicides are loosing their effects and becoming resistant to them. So that analogous compounds can be designed as substitute, if their structures are known. A rational approach to test these fungicides is to know the three dimensional structure of these compounds and their macromolecular receptor sites as well as their molecular complex. The interactions of proposed fungicides with the macromolecule of the parasite are dependent on the stereochemistry of these compounds. In order to design more effective synthetic fungicides, it is necessary to analyses the three dimensional structure of these compounds and if possible the receptor molecule. The structures of these compounds can be obtained by X-ray diffraction method in crystalline form and they will invariably be similar to their structures in solution.
Experimental
Colorless well formed crystals are grown by slow evaporation technique from a solution of cyclohexanone at 278ºK of both the fungicides. The unit cell parameters are determined by automatic computerized 4-circled Enraf-Nonius CAD-4 Diffractometer. The crystal structure is solved using SHELXS-97. .Bond Lengths of â-4(-Chlorophenoxy)á- (1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angstrom) involving Non-Hydrogen atoms is shown in table 1 and Bond Angles (Degrees) – involving Non-Hydrogen atoms is shown in table2 . Bond Lengths of 1-(4-chlorophenoxy) 3, 3- dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone (Angstrom) involving Hydrogen atoms is shown in table 3 and Bond Angles (Degrees) – involving Hydrogen atoms is shown in table4. The ORTEP Diagram of 1-(4-chlorophenoxy) 3, 3- dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone is shown in fig. 1 and the ORTEP Diagram of â-4(-Chlorophenoxy) á-(1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol is shown in fig. 2.
Result and Discussion:
In â-4(-Chlorophenoxy)á- (1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol the average bond distances of C-H and N-H types are 0. 96(2)Å and. 0.90(1)Å respectively. In 1-(4-chlorophenoxy) 3, 3-dimethyl- 1-H(1,2,4 triazole-1-Y-1) -2 –butanone the average bond distance of C-H is 0.95Ú. The bond lengths and angles in the benzene rings show regular features in both the molecules. The C(4)-Cl(1) and Cl(2)-C(18) distances are 1. 748(1)Å and 1. 747(2)Å in â-4(-Chlorophenoxy)á1,1dimethylethyl)1H- 1,2,4-triazole-1-ethano l .The Cl(1A)-C(4A) and Cl (1 B)-C(4B) distances are I .733Ú and 1 .738Ú in 1-(4-chlorophenoxy) 3, 3-dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. These distances are short and shortening may be due to delocalization of electrons from the benzene rings. The whole molecules appeared to be twisted and folded and reason may be due to stacking constraints. The bond distances around C(7) and C(21) are as usual shorter than single bond values in â-4(-Chlorophenoxy)-á-1,1dimethylethyl)1H-1,2,4-triazole
Fig. 1: ORTEP Drawing at 50% probability level.
Fig. 2: ORTEP DIAGRAM
Table 1: Bond Lengths of â-4(-Chlorophenoxy)á- (1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angstrom) involving Non-Hydrogen atoms.
Cl(1) | -C(4) | 1.7484(1) |
O(1) | -C(1) | 1.3889(2) |
O(1) | -C(7) | 1.4028(1) |
O(2) | -C(8) | 1.2070(1) |
N(1) | -N(2) | 1.3456(1) |
N(1) | -C(14) | 1.2955(2) |
N(2) | -C(7) | 1.4360(1) |
N(2) | -C(13) | 1.3410(1) |
N(3) | -C(13) | 1.3084(2) |
N(3) | -C(14) | 1.3239(1) |
C(1) | -C(2) | 1.3757(2) |
C(1) | -C(6) | 1.3951(1) |
C(2) | -C(3) | 1.3732(2) |
C(3) | -C(4) | 1.3881(2) |
C(4) | -C(5) | 1.3696(2) |
C(5) | -C(6) | 1.3636(1) |
C(7) | -C(8) | 1.5399(2) |
C(8) | -C(9) | 1.5157(1) |
C(9) | -C(10) | 1.5361(2) |
C(9) | -C(11) | 1.5022(1) |
C(9) | -C(12) | 1.5219(1) |
Cl(2) | -C(18) | 1.7473(2) |
O(3) | -C(15) | 1.3751(1) |
O(3) | -C(21) | 1.4114(2) |
O(4) | -C(22) | 1.1995(2) |
N(4) | -N(5) | 1.3349(1) |
N(4) | -C(28) | 1.3032(1) |
N(5) | -C(21) | 1.4402(2) |
N(5) | -C(27) | 1.3342(1) |
N(6) | -C(27) | 1.3096(2) |
N(6) | -C(28) | 1.2971(1) |
C(15) | -C(16) | 1.3851(1) |
C(15) | -C(20) | 1.3947(2) |
C(16) | -C(17) | 1.3720(2) |
C(17) | -C(18) | 1.3606(1) |
C(18) | -C(19) | 1.3670(2) |
C(19) | -C(20) | 1.3835(1) |
C(21) | -C(22) | 1.5470(2) |
C(22) | -C(23) | 1.5043(2) |
C(23) | -C(24) | 1.5154(2) |
C(23) | -C(25) | 1.4884(1) |
C(23) | -C(26) | 1.5587(1) |
Table 2: Bond Angles (Degrees) of â-4(-Chlorophenoxy)á- (1,1dimethylethyl)1H-1,2,4-triazole-1-ethanol (Angles are ordered on the middle label, left to right and top to bottom) involving Non-Hydrogen atoms with estimated standard deviations in parentheses:
C(1) -O(1) | -C(7) | 119.63(1) |
N(2) -N(1) | -C(14) | 103.80(2) |
N(1) -N(2) | -C(7) | 121.85(2) |
N(1) -N(2) | -C(13) | 107.77(1) |
C(7) -N(2) | -C(13) | 130.36(2) |
C(13) -N(3) | -C(14) | 103.31(1) |
O(1) -C(1) | -C(2) | 125.09(1) |
O(1) -C(1) | -C(6) | 114.80(2) |
C(2) -C(1) | -C(6) | 119.92(1) |
C(1) -C(2) | -C(3) | 120.82(2) |
C(2) -C(3) | -C(4) | 117.98(1) |
Cl(1) -C(4) | -C(3) | 118.81(2) |
Cl(1) -C(4) | -C(5) | 119.23(1) |
C(3) -C(4) | -C(5) | 121.96(1) |
C(4) -C(5) | -C(6) | 119.49(2) |
C(1) -C(6) | -C(5) | 119.74(1) |
O(1) -C(7) | -N(2) | 111.71(2) |
O(1) -C(7) | -C(8) | 100.96(2) |
N(2) -C(7) | -C(8) | 113.64(1) |
O(2) -C(8) | -C(7) | 119.12(1) |
O(2) -C(8) | -C(9) | 123.55(1) |
C(7) -C(8) | -C(9) | 117.34(2) |
C(8) -C(9) | -C(10) | 109.77(1) |
C(8) -C(9) | -C(11) | 109.49(1) |
C(8) -C(9) | -C(12) | 107.05(2) |
C(10) -C(9) | -C(11) | 109.95(1) |
C(10) -C(9) | -C(12) | 109.85(2) |
C(11) -C(9) | -C(12) | 110.69(1) |
N(2) -C(13) | -N(3) | 110.29(1) |
N(1) -C(14) | -N(3) | 114.77(1) |
C(15) -O(3) | -C(21) | 118.87(2) |
N(5) -N(4) | -C(28) | 112.37(1) |
N(4) -N(5) | -C(21) | 130.51(2) |
N(4) -N(5) | -C(27) | 107.91(1) |
C(21) -N(5) | -C(27) | 121.56(1) |
C(27) -N(6) | -C(28) | 118.71(2) |
O(3) -C(15) | -C(16) | 125.05(1) |
O(3) -C(15) | -C(20) | 114.45(2) |
C(16) -C(15) | -C(20) | 120.50(1) |
C(15) -C(16) | -C(17) | 119.72(1) |
C(16) -C(17) | -C(18) | 119.53(2) |
Cl(2) -C(18) | -C(17) | 119.71(2) |
Cl(2) -C(18) | -C(19) | 118.39(1) |
C(17) -C(18) | -C(19) | 121.89(2) |
C(18) -C(19) | -C(20) | 119.78(1) |
C(15) -C(20) | -C(19) | 118.56(2) |
O(3) -C(21) | -N(5) | 111.56(1) |
O(3) -C(21) | -C(22) | 102.56(2) |
N(5) -C(21) | -C(22) | 112.55(1) |
O(4) -C(22) | -C(21) | 119.37(2) |
O(4) -C(22) | -C(23) | 123.16(1) |
C(21) -C(22) | -C(23) | 117.31(2) |
C(22) -C(23) | -C(24) | 112.53(1) |
C(22) -C(23) | -C(25) | 112.27(2) |
C(22) -C(23) | -C(26) | 105.10(1) |
C(24) -C(23) | -C(25) | 112.81(2) |
C(24) -C(23) | -C(26) | 107.22(1) |
C(25) -C(23) | -C(26) | 106.27(2) |
N(5) -C(27) | -N(6) | 100.90(1) |
N(4) -C(28) | -N(6) | 100.06(1) |
Table 3: Bond lengths [ A] with estimated standard deviation in parentheses for 1-(4-Chlorophenoxy) 3,3-dimethyl-1- H(1,2,4-triazole-1-Y-1)2-butanone
C1(1A)-C (4A) | 1.733 (2) |
O (1A) -C (1A) | 1.383 (2) |
O (1A) -C (7A) | 1.423 (2) |
O (2A) -C (10A) | 1.200 (2) |
N (1A) -C (8A) | 1.339 (3) |
N (1A) -N (2A) | 1.361 (2) |
N (1A) -C (7A) | 1.440 (2) |
N (2A) -C (9A) | 1.312 (3) |
N (3A) -C (8A) | 1.315 (3) |
N (3A) -C (9A) | 1.336 (3) |
C (1A) -C (2A) | 1.382 (3) |
C (1A) -C (6A) | 1.386 (3) |
C (2A) -C (3A) | 1.390 (3) |
C (2A) -H (2AA) | 0.9300 |
C (2A) -C (4A) | 1.371 (3) |
C (3A) -H (3AA) | 0.9300 |
C (3A) -C (5A) | 1.381 (3) |
C (4A) -C (6A) | 1.372 (3) |
C (5A) -H (5AA) | 0.9300 |
C (6A) -H (6AA) | 0.9300 |
C (7A) -C (10A) | 1.553 (3) |
C (7A) -H (7AA) | 0.9800 |
C (8A) -H (6AA) | 0.9300 |
C (9A) -H (8AA) | 0.9300 |
C (10A)-C (11A) | 1.512 (3) |
C (11A)-C (12A) | 1.529 (3) |
C (11A)-C (14A) | 1.530 (3) |
C (11A)-C (13A) | 1.542 (3) |
C (12A)-H (12A) | 0.9600 |
C (12A)-H (12B) | 0.9600 |
C (12A)-H (12C) | 0.9600 |
C (13A)-H (13A) | 0.9600 |
C (13A)-H (13B) | 0.9600 |
C (13A)-H (13C) | 0.9600 |
C (14A)-H (14A) | 0.9600 |
C (14A)-H (14B) | 0.9600 |
C (14A)-H (14C) | 0.9600 |
C1(1B) -C (4B) | 1.738 (2) |
C1(1B) -C (1B) | 1.388 (2) |
O (1B) -C (7B) | 1.411 (2) |
O (1B) -C (10B) | 1.201 (2) |
N (1B) -C (9B) | 1.337 (3) |
N (1B) -N (2B) | 1.356 (2) |
N (1B) -C (7B) | 1.443 (2) |
N (2B) -C (8B) | 1.316 (3) |
N (3B) -C (9B) | 1.314 (3) |
N (3B) -C (8B) | 1.331 (3) |
C (1B) -C (2B) | 1.381 (3) |
C (1B) -C (6B) | 1.386 (3) |
C (2B) -C (3B) | 1.381 (3) |
Table 4: Bond angles [degree] with estimated standard deviation in parentheses for 1-(4-Chlorophenoxy) 3,3- dimethyl-1- H(1,2,4-triazole-1-Y-1)2-butanone 1-ethanol.
C (1A) – O (1A) – C (7A) | 119.69 (15) |
C (8A) – N (1A) – N (2A) | 108.92 (18) |
C (8A) – N (1A) – C (7A) | 130.80 (19) |
N (2A) – N (1A) – C (7A) | 120.28 (16) |
C (9A) – N (1A) – N (1A) | 101.36 (19) |
C (8A) – N (3A) – C (9A) | 101.62 (15) |
C (2A) – C (1A) – O (1A) | 124.65 (17) |
C (2A) – C (1A) – C (6A) | 120.37 (19) |
O (1A) – C (1A) – C (6A) | 114.97 (17) |
C (1A) – C (2A) – C (3A) | 119.45 (19) |
C (1A) – C (2A) – C (2AA) | 120.32(16) |
C (3A) – C (2A) – C (2AA) | 120.34(16) |
C (4A) – C (4A) – C (2A) | 119.81(12) |
C (4A) – C (3A) – C (3AA) | 120.12(12) |
C (2A) – C (3A) – C (3AA) | 120.14(14) |
C (3A) – C (4A) – C (5A) | 120.62 (12) |
C (3A) – C (4A) – C (1A) | 120.15 (19) |
C (5A) – C (4A) -C (1A) | 119.27 (18) |
C (6A) – C (5A) -C (4A) | 120.14 (12). |
C (6A) – C (5A) -H (5AA) | 120.02(15) |
C (4A) – C (5A)- H (5AA) | 120.03(14) |
C (5A) – C (6A) – C (1A) | 119.72 (12) |
C (5A) – C (6A) – H (6AA) | 120.14(16) |
C (1A) – C (6A) – H (6AA) | 120.13(15) |
O (1A) -C (7A) – N (1A) | 111.06 (16) |
O (1A) -C (7A) – C (10A) | 101.45 (15) |
N (1A) -C (7A) – C (10A) | 113.11 (16) |
O (1A) -C (7A) – H (7AA) | 110.34(18) |
N (1A) -C (7A) -H (7AA) | 110.32(12) |
C (10A) -C (7A) -H (7AA) | 110.33(12) |
N (3A) – C (8A) -N (1A) | 111.24 (12) |
N (3A) – C (8A) -H (8AA) | 124.42(18) |
N (1A) – C (8A) -H (8AA) | 124.43(19) |
N (2A) – C (9A) -N (3A) | 116.66 (12) |
N (2A) – C (9A)- H (9AA) | 121.54(12) |
N (2A) – C (9A) -H (9AA) | 121.53(15) |
O (2A) – C (10A) -C (11A) | 124.62 (12) |
O (2A) – C (10A) -C (7A) | 118.52 (19) |
C (11A) -C (10A) -C (7A) | 116.86 (18) |
C (10A) -C (11A) -C (12A) | 107.47 (18) |
C (10A) -C (11A) – C (14A) | 109.9 (20) |
C (12A) -C (11A) – C (14A) | 110.01(20) |
C (10A) -C (11A) – C (13A) | 110.3 (12) |
C (12A) -C (11A) – C (13A) | 109..7 (12) |
C (14A) -C (11A) – C (13A) | 109.4 (12) |
C (11A) -C (12A) – H (12A) | 109.5(14) |
C (11A) -C (112A) H (12B) | 109.5(15) |
H (12A) – C (12A) – H (12B) | 109.5(14) |
C (11A) – C (12A) – H (12C) | 109.5(12) |
H (12A) – C (12A) – H (12C) | 109.5(14) |
H ( 12B) -C (12A) – H (12C) | 109.5(13) |
C (11A) – C (13A) – H (13A) | 109.5(12) |
C (11A) – C (13A) – H (13B) | 109.5(11) |
H (13A) – C (13A) – H (13B) | 109.5(10) |
C (11A) – C (13A) – H (13C) | 109.5(12) |
H ( 13A)- C (13A) – H (13C) | 109.5(14) |
H ( 13B)- C (13A) – H (13C) | 109.5(15) |
C (11A) – C (14A) – H (14A) | 109.5(14) |
C (11A) – C (14A) – H (14B) | 109.5(11) |
H (14A) – C (14A) – H (14B) | 109.5(15) |
C (11A) – C (14A) – H (14C) | 109.5(14) |
H (14A) – C (14A) – H (14C) | 109.5(12) |
H (14B) – C (14A) – H (14C) | 109.5(11) |
C (1B) – O (1B) – C (7B) | 119.10 (15) |
C (9B) – N (1B) – N (2B) | 109.03 (17) |
C (9B) – N (1B) – C (7B) | 130.16 (18) |
N (2B) – N (1B) – C (1B) | 120.79 (16) |
C (8B) – N (2B) – N (8B) | 101.42 (18) |
C (9B) – N (3B) – C (8B) | 101.8 (12) |
C (2B) -C (1B) – C (6B) | 120.65 (19) |
C (2B) -C (1B) -O (1B) | 124.74 (17) |
C (6B)- C (1B) – O (1B) | 114.60 (17) |
C (3B)- C (1B) – C (1B) | 119.35 (19) |
C (3B) -C (2B) – H (2BA) | 120.31(14) |
C (1B)- C (2B) – H (2BA) | 120.34(15) |
C (4B)- C (3B) – C (2B) | 119.9 (12) |
C (4B)- C (3B) – H (3BA) | 120.11(16) |
C (2B)- C (3B) – H (3BA) | 120.12(14) |
C (3B)-C (4B) – C (5B) | 121.11 (12) |
C (3B)-C (4B) – C1(1B) | 119.91 (12) |
C (3B)- C (4B)- C1 (1B) | 119.72 (18) |
C (5B)- C (4B)-C (1B) | 119.18 (17) |
C (4B)- C (5B)- C (6B) | 119.5 (12) |
C (4B)- C (5B)- H (5BA) | 120.22(15) |
C (6B)- C (5B)- H (5BA) | 120.21(16) |
C (5B)- C (6B)- C (1B) | 119.52 (12) |
C (5B)- C (6B)- H (6BA) | 120.25(14) |
C (1B)- C (6B)- H (6BA) | 120.22(13) |
O (1B)- C (7B)- N (1B) | 111.33 (16) |
O (1B)- C (7B)- C (10B) | 101.97 (15) |
N (1B)- C (7B)- C (10B) | 112.9 (16) |
O (1B)- C (7B)- H (10B) | 110.12(13) |
N (1B) – C (7B)-H (7BA) | 110.13(14) |
C (10B)-C (7B) -H (7BA) | 110.15(12) |
N (2B)- C (8B)- N (3B) | 116.71 (12) |
N (2B)- C (8B)- H (8BA) | 121.72(13) |
N (3B)- C (8B) -H (8BA) | 121.71(13) |
N (3B)- C (9B) -N (1B) | 111.13 (12) |
N ( 3B)-C (9B) H (9BA) | 124.54(14) |
N (1B) -C (9B) H (9BA) | 124.53(16) |
O (2B) -C (10B) -C (11B) | 123.6 (12) |
O (2B) -C (10B) -C (7B) | 119.35 (19) |
C (11B) – C (10B) -C (7B) | 117.01 (18) |
C (13B) – C (11B) – C (10B) | 110.3 (12) |
C (13B) – C (11B) – C (14B) | 112.8 (13) |
C (10B) – C (11B) – C (14B) | 111.5 (12) |
C (13B) – C (11B) – C (12B) | 107.7 (13) |
C (10B) – C (11B) – C (12B) | 106.50 (19) |
C (14B) – C (11B) – C (12B) | 107.8 (12) |
C (11B) – C (12B) – H(12D) | 109.5(12) |
C (11B) – C (12B) – H (12E) | 109.5(13) |
H (12D) – C (12B) – H (12E) | 109.5(14) |
C (11B) – C (12B) – H (12F) | 109.5(13) |
H (12D) – C (12B) -H (12F) | 109.5(15) |
H (12E) – C (12B) -H (12F) | 109.5(13) |
C (11B) – C (13B) – H (13D) | 109.5(14) |
C (11B) – C (13B) – H (13E) | 109.5(15) |
H (13D) – C (13B)- H (13E) | 109.5(14) |
C (11B) – C (13B) – H (13F) | 109.5(12) |
H (13D) – C (13B) – H (13F) | 109.5(11) |
H (13E) – C (13B) – H (13F) | 109.5(11) |
C (11B) – C (14B) – H (14D) | 109.5(12) |
C (11B) – C (14B) – H (14E) | 109.5(13) |
H (14D) – C (14B)- H (14E) | 109.5(13) |
C (11B) – C (14B) – H (14F) | 109.5(14) |
H (14D) – C (14B) – H (14F) | 109.5(14) |
H (14E) – C (14B) – H (14F) | 109.5(14) |
The bond distances around C(7A) and C(7B) are usual shorter than single bond values in 1-(4-chlorophenoxy) 3, 3-dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. They may also appears to bear a partial double bond character. In â-4(-Chlorophenoxy)á-1,1dimethylethyl-1H-1,2,4-triazole-1 ethanol the C(7)-O(1) and C(21)-O(3) distances are 1. 4028(1)Å and 1. 4114(2)Å respectively. In 1-(4-chlorophenoxy) 3, 3- dimethyl-1-H(1,2,4 triazole-1-Y-1) -2 –butanone. the O(IA) C(7A) and O(2B)-C(7B) distances are 1.423(2) A and 1.411(2). These distances do not change significantly in similar structures, despite variable intermolecular interactions through them. The bond distances in the triazol rings are comparable to corresponding distances is heterocyclic rings 1.339 (A). The average set of data by Spencer is 1.377A and 119° respectively. The dimensions of the methyl groups are normal and comparable with those in 0-methyl obtusaquinone and moscaline hydro bromide.
The molecule is found to adopt a conformation such that the triazolyl ring is inclined angle of 72.9(9)° to the aromatic ring and at an angle of 61. 5(9)° 1 O(1A), C(7A) grouping The resulting arrangement 1ead approach of the ortho-H, H(2A) to the triazol, atoms N(1A) and N (2A) such that both N….H distances lie within the sum of the Vander Walls radii of N and H. There was an accompanying distortion of the exocyclic angles at C(1A) with the C(2A)-C(1A)-O(1A) bond angle of. 124. 65(17)° being considerably larger than the value found for O1(A)-C(IA) C(6A) 114 .97(17)°
The triozolyl ring is planner with C(7A) lying only O.063(7)A from the mean plane. Although the C(8A) and C(9A)-N(3A) distances are somewhat larger than C(8A)-N(3A) and C(9A)-N(2A), in keep With the uncharged canonical valance form. All four C-N distances are shorter than a normal single bond (1.47A). The N(1A)-N(2A) bond is also shorter than a normal single bond (1.45A). The three atoms bonded to N(1) are almost co planer with it. Taken together these data indicate extensive delocalization within the heterocyclic ring. The most note worthy feature of the heterocyclic ring is the asymmetry of the exocyclic angles at N (1A) [ i30.80°1.
We have observed a similar pattern in related triazole systems and it appear to be a function of a triazolyl ring itself rather than the influence of any inter or intramolecular interactions.
The C(1IA), C(1OA), C(7A), O(1A), C(1A) backbone is rather compressed resulting in the main from the orientation of the tert-butyl group, the C(1 1A)- C(1OA)-C(7A)-O(IA) torsion being only 99.17(19)°. From the least square plane equation by Blow’s method, the benzene and triozolyl rings are partially planner since the atomic displacements are much less than their e.s.d’s.The triozolyl ring is inclined to the aromatic ring at an angle of 72.9(9)°
Thus we study the structure of variety of such compounds and correlate their structure with biological activity, so that more safer and effective fungicides at reasonable price can be developed.
Acknowledgement
The Financial assistance provided by Deptt of Science and Technology (D. S. T), New Delhi is gratefully acknowledged.
References
- Kolbe, W. (1976), Poflanzenschutz – Nachnchten Bayer 31, 163-180.
- Clark. T., D.R. Clifford, A.H Deas, P. Gendle and D.A.M. Watkins (1978), Pestic.Sci.9, 497506.
- Sheldrich, G.M. (1997), SHELXS-97, Program for the solution of crystal structure.
- Sheldrich, G.M. (1997), SHELXL-97, Program for crystal structure determination.
- Jolmson, C.K. (1965), ORTEP, Report ORNL-3794. Oak Ridge National laboratory, Temessee, U.S.A.
- Nowell, l.W. and Walker, P.E. (1982) Acta Cryst. B38, 1857- 1859
- Bucheuauer, H. (1976). Z. P llanzeskar. Pflanzenschutz. B3, 368-367.
- Martin, T.J. & Morris, D.B. (1979) Pflanzenschutz Nachr. Am. Ed. 32, 3 1-79
- Senger, Jyotsna, Ph.D. Thesis, Jiwaji University, Gwalior India (2002).
- Haridus, M., Kulkarni, N.R., Tiwari; R.K. and Singh T.P. (1982), Curr. Sci. (India) 51(23), 1111.
- Spencer, M. (1959), Acta Cryst. 12, 50.
- Palmer. K.J., Wang, R.Y. and Jurd, L. (1973), Acta Cryst. B29, 1509.
- Ernst, S.R. and Cogle Jr. F.W. (1973), Acta Cryst. B29, 1543.
- Blow, O.M. (1960), Acta Cryst. 13, 168.